Главная страница -> Технология утилизации
Опыт разработки энергоэффективных систем вентиляции для жилых домов. Вывоз мусора. Переработка мусора. Вывоз отходов.Использование систем солнечного отопления и охлаждения в существующих домах должно стать одной из первоочередных задач. Это обеспечит не только реальное сокращение потребностей в ископаемом топливе, но и сэкономит значительные денежные средства. Рис. 1. Размещение солнечных коллекторов применительно к существующим зданиям: 1 - на существующей крыше или стене; 2 - коллектор; 3 - только вертикальные стеновые коллекторы (для широт выше 35°с.ш.); 4 - на пристройке к зданию; 5 - на отдельной конструкции. Как и для новых зданий, переоборудование старых может осуществляться на различных уровнях технологической сложности, денежных и энергетических расходов и практического подхода. Существуют три основных способа переоборудования зданий: крепление коллекторов к существующим или несколько видоизмененным наружным стенам или крышам домов; установка коллекторов на пристройку к зданию (крыльцо, гараж, новое крыло); строительство сооружения для размещения коллекторов отдельно от здания (отдельно стоящий сарай, гараж, амбар или сооружение, построенное исключительно для размещения коллектора. Из-за ограничений, связанных с использованием существующих зданий, ориентация и угол наклона коллекторов могут быть неоптимальными. Часто экономические соображения ограничивают возможность изменить имеющиеся условия применения коллекторов и тем самым суживают возможности оптимизации проекта. Конструкция коллекторов, используемых для нагрева воды, обладает несколько большей гибкостью благодаря меньшему размеру коллекторов. Этому способствует и режим круглогодичного их использования, поскольку положение солнечного диска на небосводе меняется в течение 12 месяцев гораздо больше, чем во время более короткого отопительного сезона. Коллекторы для системы солнечного охлаждения с трудом достигают требуемой эффективности даже в наилучших условиях инсоляции, и поэтому по возможности должны иметь оптимальную конструкцию и размещение, что затрудняет их приспособление к существующим зданиям. Для системы солнечного отопления размер коллектора должен быть более половины площади пола здания, но не менее 10 м2. Для приготовления горячей воды коллектор может быть небольшим исходя из нормы 2,5...3 м2 на человека. Ориентация коллекторов для системы отопления должна быть в пределах от юг - юго-востока до юг - юго-запада и от юго-востока до юго-запада для системы приготовления горячей воды. Угол наклона коллекторов для системы отопления помещений (измеряемый от горизонтали) может находиться в пределах = ...( + 10...15)°, где - широта местности. Для 40°с.ш. пределы составляют 40...90°. Наклон коллекторов для системы горячего водоснабжения находится в пределах (-10)...(+25)°. Для 40°с.ш. этот диапазон составляет 30...75°. Во всех вышеуказанных пределах сезонная или годовая общая эффективность системы будет отличаться не более чем на 10...20 % от оптимальной. Один из самых простых способов использования солнечного тепла при существующих крышах заключается в пропускании воды поверх гонтовой поверхности. Теплоприемная поверхность должна быть как можно более черной, при необходимости окрашенной и свободной от мусора. К стропилам крепятся рамы для двух слоем остекления и конструкционного материала (например, полиэфирной смолы, армированной стекловолокном) с учетом мер для предупреждения протечек. Крышу можно также покрыть волнистыми алюминиевыми листами, окрашенными в черный цвет и закрытыми стеклом. Вода подается через перфорированную трубу вдоль конька крыши и собирается затем в желоб. Коэффициент полезного действия такого коллектора невелик, но незначительные затраты, связанные с превращением существующей крыши в солнечный коллектор, могут оправдать невысокий КПД. На рис. 2 показаны некоторые детали возможной конструкции коллектора. Участки стен южной ориентации можно превратить в воздушные коллекторы примерно также, как это было сделано с крышами. Коллекторы водяного типа при размещении на стенах менее практичны, поскольку отсутствует наклонная поверхность, по которой вода может стекать. Рис. 2. Переделка существующей крыши в солнечный коллектор водяного типа с открытым потоком: 1 - верхняя накладка; 2 - труба с перфорациями; 3 - два слоя стекла или другого прозрачного материала; 4 - холодная вода; 5 - фильтр (для асфальтовой крошки); 6 - нагретая вода, стекающая в желоб; 7 - конопатка (типовая); 8 - стекло; 9 - металлическая кляммера; 10 - гонт; 11 - фанера; 12 - стропило. Во дворах вне дома коллекторы могут размещаться на отдельно стоящих конструкциях. Пример такого устройства показан на рис. 3. Прохладный воздух из дома отбирается через нижнюю часть окна в солнечный коллектор, а подается обратно в помещение через верхнюю часть окна. Устройство похоже на оконный кондиционер. Более высокая степень регулирования достигается путем подачи прохладного воздуха в коллектор из одного окна и возврата теплого воздуха в другое. Рис. 3. Портативный солнечный коллектор воздушного типа, устанавливаемый во дворе. При переоборудовании существующих зданий можно применить быстрый и достаточно дешевый метод установки простых солнечных коллекторов воздушного типа в оконной коробке. На рис 4, 5, 6 представлены модификации вертикальных термосифонных солнечных коллекторов. Такие коллекторы предназначены для установки в проемы существующих окон. На рис. 4 показана конструкция, приписываемая Баку Роджерсу из г. Эмбудо (Нью-Мексико, США). Прохладный воздух из помещения засасывается в коллектор нагретым воздухом, который из коллектора поступает в помещение. Вертикальный вариант этой конструкции, показанный на рис. 5, особенно приемлем для крупных зданий. Рис. 4. Солнечный коллектор, встроенный в оконную коробку: 1 - стена дома; 2 - окно; 3 - теплый воздух; 4 - прохладный воздух; 5 - стекло; 6 - коллектор; 7 - фанера; 8 - изоляция. Рис. 5. Вариант устройства солнечного коллектора в оконной коробке: 1 - существующая стена дома; 2 - существующее окно; 3 - нагретый воздух; 4 - прохладный комнатный воздух; 5 - стекло или пластмасса; 6 - черная пластина коллектора; 7 - пол в помещении. Хотя коллектор в оконной коробке может быть почти любого размера , его эффективность, даже и значительная, основываясь на площади, в действительности будет мала, если размеры коллектора существенно не превышают размеров окна. Если для обеспечения 50%-ной потребности в отоплении требуется коллектор размером 25...50% от площади пола здания, то должно быть ясно, что для заметной экономии энергии требуются большие коллекторы. На рис. 6 показан коллектор значительно превышающий размеры окна. Рис. 6. Коллектор, превышающий по размеру оконную коробку. Трудная задача дополнения существующих зданий аккумулятором тепла была практически решена Дж. П. Гуптой и Р. К. Чопрой из лаборатории министерства обороны (г. Джодхпур, Индия). Они разработали простой солнечный обогреватель комнат не требующий механической энергии и встраиваемый в существующие здания. Рис. 7. Простой солнечный обогреватель комнаты: 1 - холодная вода; 2 - коллектор; 3 - солнечная радиация; 4 - горячая вода; 5 - перелив; 6 - стена; 7 - фанера; 8 - изоляция (сухая трава); 9 - глинобитная крыша; 10 - джутовая изоляция; 11 - воздушный зазор; 12 - отверстие для сообщения с атмосферой и заливки; 13 - кран; 14 - стекловата; 15 - бак; 16 - подставка для бака; 17 - дверь. Как видно из рис. 7, солнечный коллектор южной ориентации наклонно опирается на стену здания. Высокий бак с горячей водой без теплоизоляции находится в помещении, примыкая хорошо изолированной стенкой к наружной стене. В результате естественной конвекции вода циркулирует из плоского коллектора в бак и обратно в коллектор. Если в данном климате возможны отрицательные температуры, в воду добавляется антифриз. Тепло в помещение бак излучает своей передней стенкой.
(По материалам международного семинара) С. Кищенко, канд. техн. наук, Координатор проекта ТАСИС ERUS 9705 Г. Шретер, Руководитель проекта ТАСИС ERUS 9705 В настоящее время в Москве по заказу Правительства города реализуется проект ТАСИС ERUS 9705 Энергосбережение в строительном комплексе , финансируемый Европейской Комиссией, целью которого является оказание содействия Правительству Москвы в разработке типового проекта нового и реконструируемого здания, практическое осуществление которых позволило бы сократить на 30 % их энергопотребление. В качестве демонстрационных объектов выбраны: 17-этажное здание серии 111-355МО в микрорайоне Никулино-2 и 9-этажное реконструируемое здание серии 1-515-04/9М на Хабаровской улице. При этом, одной из центральных задач проекта является разработка энергоэффективной системы вентиляции, обеспечивающей как тепловой комфорт проживания в условиях повышенной герметичности зданий, так и сокращение расхода тепла на подогрев инфильтрующегося воздуха. Уделяя существенное внимание проблеме создания современной системы вентиляции жилых домов, Правительство Москвы (Комплекс архитектуры, строительства, развития и реконструкции) совместно с руководством проекта ТАСИС организовали и провели на базе ОАО Сантехпром 29 февраля сего года специальный международный семинар Зарубежный и российский опыт разработки энергоэффективных систем вентиляции для жилых домов . В Западной Европе еще раньше столкнулись с аналогичными проблемами, и там уже накоплен определенный опыт по их решению. Существенный интерес представляет опыт Восточных земель Германии, где за последнее время была осуществлена массовая реконструкция панельных зданий, включая модернизацию систем вентиляции. Так, в настоящее время в Германии применяются следующие системы вентиляции для жилых зданий: естественные; вытяжные с центральным вентилятором; приточно-вытяжные с утилизацией тепла и без нее. До середины 60-х годов более 65 % жилого фонда бывшей ГДР использовали естественную систему вентиляции. С начала 70-х годов в жилых зданиях промышленного строительства (это около 30 % от общего) использовалась механическая вентиляция как вытяжная, так и приточно-вытяжная. Последняя применялись лишь в высотных домах отдельных серий - в 10-этажных 1969 года постройки и в 18-21-этажных 1970-1975 годов постройки. Необходимо подчеркнуть, что из-за неудовлетворительной работы систем естественной вентиляции с использованием коллекторных шахт, связанной, прежде всего, с негерметичностью, с июня 1981 года в Германии подобные системы в новостройках и в модернизированных домах не нормируются. В настоящее время в многоэтажных жилых зданиях предпочтение отдается централизованным установкам вытяжной вентиляции, однако используются также индивидуальные вентиляторы в ванной и туалете или на кухне, в случае, если в этих помещениях нет окон. Для возможности регулирования поступающего в квартиры воздуха в странах Западной Европы в системах вытяжной вентиляции используют следующие основные системы: устройство в наружной стене под окном - один из примеров см. рис. 1; устройство в наружной стене рядом с окном (рис. 2); оконное впускное устройство нерегулируемое (рис. 3) и с ограничением максимального притока воздуха (рис. 4). Специалисты из Германии успешно используют в централизованную вытяжную вентиляционную систему с поквартирно изменяющимся расходом воздуха AIROSET-2000. Преимущество этой системы перед остальными заключается в следующем: возможность регулирования системы вентиляции в каждой квартире; низкий уровень шума; экономия энергии; несложное техническое обслуживание; соответствие требованиям противопожарной безопасности. За последние 10 лет подобные системы, рассчитанные на 22-этажные дома, были установлены в десятках тысяч квартир. В Москве в рамках одного из проектов эта система установлена в 10-этажном доме. Одним из центральных элементов этой системы является настенный автомат, значительную часть поверхности которого занимает фильтр. В автомат встроен датчик влажности, что позволяет своевременно решать проблему возникновения повышенной влажности в помещении. Система также снабжается радиальным крышным вентилятором с незакрученно-направленным вертикальным выпуском воздуха и цокольным шумоглушителем. Во Франции используется система вытяжной вентиляции со специально спрофилированной в оконном проеме или в стене под окном щелью. Изнутри помещения эта щель закрывается клапаном с глушителем и мембраной с отверстиями из полиэтиленовой пленки. Одной из последних разработок является специальный клапан, открывающийся при достижении определенной влажности в помещении. Одним из решений по регулированию пропуска воздуха через окно является система с устройством ALD (рис. 4), которая обеспечивает пропуск свыше 10 м3/ч воздуха. Интегрированный регулирующий клапан полностью автоматически ограничивает объем свежего воздуха при перепаде давления свыше 8 Пa (рис. 6). Свободно двигающийся клапан, имеющий форму буквы Z , ограничивает поперечное сечение кольцевого канала в зависимости от количества проникающего воздуха. Еще одним примером использования регулирования пропуска воздуха через окно является система ReComat, которая представляет собой вентиляционные пластины из пластмассы, привинчиваемые в верхнюю часть рамы окна, что позволяет обеспечивать при давлениях от 20 до 30 Па расход воздуха в диапазоне 4,3-6,0 м3/ч. Что касается централизованных приточно-вытяжных систем с утилизацией тепла, то они имеют наивысший потенциал экономии тепла, однако его достижение связано с высокими энергетическими и эксплуатационными затратами, а также с необходимостью ограничивать инициативу жильцов по самопроизвольному открытию окон. Попытка избежать недостатков централизованной приточно-вытяжной системы вентиляции привела к разработке децентрализованной поквартирной приточно-вытяжной системы с утилизацией тепла (рис. 5). Эта система обладает следующими преимуществами: постоянное вентилирование всего жилого пространства; относительная влажность воздуха в помещении не превышает 45 %; благодаря двукратной фильтрации обеспечен подвод чистого воздуха; экономия тепла за счет утилизации составляет до 20 %. Так называемая система System Airaterm позволяет плавно регулировать воздухообмен, учитывая также солнечное излучение и скорость ветра, достигая теплового коэффициента полезного действия 66-80 %, и обеспечивает влажность в помещении на уровне 45-55 %. При поступлении воздуха с расходом 34 м3/ч уровень шума составляет 21 ДБа (практически неслышен), при расходе 60 м3/ч - уровень шума 32 ДБа (тихий шелест листьев), а при расходе 80 м3/ч уровень шума - 39 ДБа (шум вентилятора компьютера). Подобного рода системы с утилизацией уже успешно работают в Германии в 5-, 10-, 11-этажных зданиях. Однако, на наш взгляд, стоимость таких установок достаточно высока, чтобы их рекомендовать для использования в массовом строительстве. Предварительный анализ рассмотренных систем позволяет заключить, что в современных герметичных зданиях необходимый с точки зрения гигиены и строительной физики воздухообмен может быть обеспечен только с помощью принудительной вентиляции. Поэтому эксперты, работающие в проекте ТАСИС, предлагают приоритетно рассмотреть использование вытяжной вентиляции, способной работать в двух режимах: базовом с воздухообменом 20-30 м3/ч и потребительском с воздухообменом более 30 м3/ч на человека. Только такая система может обеспечить достаточную вентиляцию всех квартир с соблюдением качества воздуха. Долголетние наблюдения в Западной Европе показали, что росту грибовидной плесени способствуют не столько очень низкие температуры наружного воздуха, но, прежде всего, температуры воздуха между 8 и 18°С. Причиной их роста является высокое содержание влаги при одновременном уменьшении вентиляции вследствие сокращения термического перепада давлений. Необходимо также подчеркнуть, что была достигнута договоренность между представителями Правительства Москвы и зарубежных фирм об испытании на экспериментальных зданиях в рамках проекта отдельных образцов регулирующих клапанов. В заключение, нам хотелось бы подчеркнуть, что представительство проекта ТАСИС готово выслушать полезные советы и рекомендации заинтересованных лиц и организаций по изложенным вопросам с тем, чтобы по окончании проекта избежать поверхностных, нереализуемых в условиях Москвы (России) технических решений. В свою очередь, мы готовы предоставить более подробную информацию по материалам семинара и реализуемого в Москве проекта ТАСИС. Литература Материалы международного семинара Зарубежный и российский опыт разработки энергоэффективных систем вентиляции для жилых домов . Москва, 29 февраля-01 марта 2000 г. - 49 с. Системы вентиляции и кондиционирования. Теория и практика. Учебное пособие. М., Евроклимат , изд-во Арина , 2000 - 416 с. Журнал АВОК , 1999, № 1-6. Domestic Ventilation with Heat Recovery, European Commission Directorate-General for Energy, 1998. Журнал Энергосбережение , № 4, 2000 г. Вывоз мусора варьируется и утилизация отходов Энергоаудит и энергосбережение в котельных установках. Реализация проектов генерации эл. А нужен ли электрокотел?. Зачем нужен. К вопросу о правовой природе договора водоснабжения. Главная страница -> Технология утилизации |