Главная страница ->  Технология утилизации 

 

Эффективность использования инфр. Вывоз мусора. Переработка мусора. Вывоз отходов.


С. В. Жарков, кандидат технических наук

 

(Институт систем энергетики

 

им. Л.А. Мелентьева СО РАН, Иркутск)

 

Широкомасштабному использованию ветроэлектростанций в электроэнергетических системах препятствуют проблемы обеспечения приемлемого качества генерируемой электроэнергии, несовпадение режима выработки энергии ветроэлектростанцией с графиком электропотребления и необходимость резервирования мощности ветроэлектростанций в энергосистеме.

 

Для сглаживания колебаний генерируемой ветроэлектростанцией мощности и ее согласования с режимом работы энергосистемы часто предлагается использовать аккумуляторы энергии: электрические батареи, воздухо- и гидроаккумулирующие электростанции (ВАЭС и ГАЭС) и другие. Так, существует предложение подавать электроэнергию от ветроэлектростанций на ГАЭС с помощью специальных электрических линий, а запасенную за счет вырабатываемой ветроэлектростанцией энергии потенциальную энергию воды использовать затем в гидрогенераторе, выдавая электроэнергию в энергосистему по мере надобности. В этом случае достаточно обеспечить условия работы электродвигателей насосов ГАЭС по качеству электроэнергии (синусоидальности напряжения, частоте и мощности), а энергосистема получит уже стабилизированную электроэнергию от гидрогенератора.

 

Однако при этом не решается проблема гарантированного покрытия графика нагрузки энергосистемы: сглаживаются лишь минутные, часовые, суточные, в лучшем случае — недельные колебания потока вырабатываемой ветроэлектростанцией энергии. В годовом же разрезе комплексы «ветроэлектростанция + аккумулятор энергии» приходится резервировать специальными электростанциями, работающими в сезон недостаточной интенсивности ветра, что, по сути, является дублированием мощности и значительно удорожает отпускаемую электроэнергию за счет не только дополнительных затрат на топливо, но и капиталовложений на дублирующую мощность.

 

Впрочем, можно предложить решение, позволяющее исключить резервирование мощности ветроэлектростанций мощностью специально сооружаемых для этого станций. С этой целью при работе ветроэлектростанций в энергосистеме путем аккумулирования ее электроэнергии и последующей выдачи ее в сеть аккумулятор энергии дозаряжают в период провала графика электрических нагрузок (ночью) от полупиковых тепловых электростанций с таким расчетом, чтобы к моменту утреннего подъема электрической нагрузки он был заряжен полностью. При этом привлекаемые станции постепенно переключаются на покрытие возрастающей нагрузки потребителей. Тогда аккумулятор энергии будет способен покрыть расчетную нагрузку в течение дня. Поскольку в любое время года в энергосистеме в период низких электрических нагрузок существует свободная мощность, предлагаемый способ обеспечивает круглогодичное резервирование мощности ветроэлектростанций, имеющей аккумулятор энергии суточного регулирования. Дублирование мощности ветроэлектростанций мощностью специальных станций исключается путем двойного использования как аккумулятора энергии, так и полупиковых ТЭС энергосистемы.

 

Для реализации данного способа необходимо обеспечить техническими средствами (линией электропередачи, переключателем тока и т.д.) возможность подключения аккумулятора энергии к электрической сети для дозарядки, а также покрытие прироста нагрузки в энергосистеме ее наиболее экономичными полупиковым и ТЭС, имеющими в это время свободную мощность. Энергия из аккумулятора может использоваться в любой части графика электрических нагрузок: пиковой, полупиковой, базисной. Однако с точки зрения стоимости замещаемой электроэнергии, первое предпочтительнее.

 

Следовательно, максимальная доля ветроэлектростанций в энергосистеме определяется наличием полупиковых ТЭС на органическом топливе. Их мощности должно быть достаточно для полной зарядки аккумуляторов ветроэлектростанций за период провала графика электрической нагрузки. Тогда ветроэлектростанция с аккумулятором энергии суточного регулирования будет гарантированно покрывать определенную часть графика электрических нагрузок. При этом повышается коэффициент использования установленной мощности уже существующих высокоэкономичных полупиковых тепловых станций, оборудование которых ночью обычно простаивает либо используется неэффективно. Для этой цели идеально подходят маневренные теплоэлектроцентрали, поскольку они имеют низкий удельный расход топлива на выработку электроэнергии и у них наблюдается наиболее резкое падение энергетических показателей при снижении электрической нагрузки станции, поэтому желательно увеличение числа часов использования их мощности. В конечном счете повышается экономичность электроснабжения, так как затраты на резервирование выработки энергии ветроэлектростанцией связаны лишь с затратами на топливо (при этом одновременно возрастает эффективность использования полупиковых ТЭС и маневренных ТЭЦ), в то время как в известных решениях присутствуют и затраты на строительство высокоманевренных дублирующих электростанций (в основном дизельных), работающих параллельно с ветроэлектростанциями в базисной части графика электрических нагрузок, либо вероятностный характер производства электроэнергии на ветроэлектростанциях демпфируется за счет резерва энергосистемы. В последнем случае, во-первых, существует жесткое ограничение доли ветроэлектростанций в энергосистеме и, во-вторых, снижается резерв энергосистемы, что чревато значительными экономическими потерями в аварийных ситуациях.

 

В случае, если возможно обеспечение достаточно высокого качества электроэнергии, генерируемой ветроэлектростанцией, с приемлемыми затратами, способ может применяться в модифицированном виде. Достаточно иметь один аккумулятор энергии — общий на энергосистему, накапливающий в течение суток «излишки» электроэнергии ветроэлектростанций, работающих в составе энергосистемы. В частности, это может быть актуально, если мощность ветроэлектростанций сравнима с мощностью местной энергосистемы. Преимущества такого варианта связаны с укрупнением и возможностью выбора места расположения аккумулятора энергии. Его использование наиболее перспективно применительно к электростанциям на нетрадиционных возобновляемых источниках энергии (НВИЭ), не имеющим серьезных проблем с качеством генерируемой электроэнергии: приливным и волновым электростанциям, малым ГЭС. Тогда такие электростанции и полупиковые ТЭС выступают партнерами. В результате повышается эффективность использования как полупиковых ТЭС, так и электростанций на НВИЭ, то есть они взаимно повышают конкурентоспособность друг друга в энергосистеме. При этом допускается широкомасштабное применение станций на НВИЭ в энергосистеме, что возможно в перспективе при повышении технико-экономических показателей как самих электростанций на НВИЭ, так и полупиковых ТЭС за счет применения в их качестве маневренных теплоэлектроцентралей, парогазовых установок и электростанций на базе топливных элементов, а также аккумуляторов энерги, в том числе, опять же, на топливных элементах. Пока же способ может найти ограниченное применение в небольших ветродизельных системах, содержащих аккумулятор энергии (например, аккумуляторные батареи). Аккумулятор покрывает пиковую нагрузку, а дизельная установка — базисную и полупиковую, дозаряжая также, в случае необходимости, батарею в период низких электрических нагрузок.

 

Таким образом энергия ветра может использоваться для покрытия пиковых электрических нагрузок.

 

 

А. Л. Булатов, начальник участка контроля

 

и наладки систем паротеплоснабжения ЦЭСТ, ОАО «ММК»

 

Е. В. Загребина, ведущий инженер участка контроля

 

систем паротеплоснабжения ЦЭСТ, ОАО «ММК»

 

Целью статьи является анализ выполнения программы реконструкции и модернизации производства за прошедшие годы в агломерационном, доменном и коксохимическом производствах, технического перевооружения прокатного передела и производство продукции дальнейших переделов. В статье указанны особенности теплоснабжения объектов ОАО «ММК» при использовании низкотемпературного графика теплоснабжения 95-70 °С, представлены взаимодействия энергетических служб комбината. В статье выполнен сравнительный анализ затрат по вариантам централизованного теплоснабжения и применения для отопления инфракрасных газовых излучателей в насосной станции блока очистных сооружений для новых сортов станов, рассчитана окупаемость инфракрасных систем и традиционных систем отопления.

 

Открытое акционерное общество «Магнитогорский металлургический комбинат» является крупнейшим предприятием черной металлургии России, его доля в объеме металлопродукции, реализуемой на внутреннем рынке страны, составляет около 20 %. Предприятие представляет собой крупный металлургический комплекс с полным производственным циклом, начиная с подготовки железорудного сырья и заканчивая глубокой переработкой черных металлов.

 

На ОАО «Магнитогорском металлургическом комбинате» (ММК) осуществляется масштабная программа реконструкции и модернизации производства. В рамках технического перевооружения за последнее десятилетие были кардинально обновлены все металлургические переделы. Произошел поэтапный переход от устаревшего мартеновского производства к кислородно-конвертерному производству. В 2006 году вошли в строй два современных электросталеплавильных агрегата. Точно также в конце 2004 года на Магнитке была окончательно прекращена разливка стали в изложницы. Сегодня вся сталь, выпускаемая ММК, проходит через машины непрерывного литья заготовки. Кардинальные изменения произошли в агломерационном, доменном и коксохимическом производствах. Но основной объем капитальных вложений комбинат традиционно направляет на развитие прокатного передела и производство продукции дальнейших переделов. За последние годы на ММК вошли в строй такие крупные производственные объекты, как двухклетевой реверсивный стан «1700» холодной прокатки, агрегат непрерывного горячего цинкования, агрегат нанесения полимерных покрытий. Закончена полная реконструкция сортопрокатного производства, в рамках которой в 2005 году введены в эксплуатацию современные, полностью автоматизированные сортовые станы «370» и «450», проволочный стан «170». Ввод новых производственных объектов и реконструкция существующего производства требует от энергетиков изменения и выбора схем обеспечения энергоресурсами, в том числе и тепловой энергией.

 

На ОАО «ММК» система теплоснабжения проектировалась по принципу максимальной централизации теплоснабжения. Существующие тепловые сети промплощадки ОАО «ММК» включают в себя порядка 2,6 тыс. потребителей.

 

Характерной особенностью эксплуатации тепловых сетей ОАО «ММК» в настоящее время является то, что реальные режимы теплоснабжения и эксплуатации тепловых сетей значительно отличаются от проектных. Это связано с тем, что используется низкотемпературный график 95–70 °С, позволяющий повысить выработку электроэнергии на ТЭЦ и ЦЭС и снизить потребление газа. Негативным последствием введения низкотемпературного графика является повышение циркуляции теплоносителя в сети, снижение ее гидравлической устойчивости в целом и в итоге недотоп помещений. Так, при пониженной температуре теплоносителя потребители в целях компенсации дефицита тепла вынуждены принимать меры к увеличению расходов теплоносителя, что приводит к снижению располагаемых напоров у смежных потребителей и нарушению гидравлики, увеличению тепловых потерь при транспортировке теплоносителя.

 

Совокупность всех этих факторов ставит перед энергетиками ОАО «ММК» новые задачи для оптимизации режимов теплоснабжения промплощадки ОАО «ММК».

 

Специалистами Управления главного энергетика (УГЭ) и Центра энергосберегающих технологий (ЦЭСТ) по результатам анализа режимов теплоснабжения за несколько отопительных сезонов УГЭ и ЦЭСТ был предложен к реализации новый проект – использования инфракрасных газовых излучателей. В чем его преимущество перед существующей системой отопления? Традиционные системы отопления базируются на нагреве воздушного пространства в отапливаемом объеме. Для отопления зданий большой высоты и объема, с низким качеством или отсутствием изоляции ограждающих конструкций с успехом применяются системы «лучистого инфракрасного обогрева». При их применении нет никакой необходимости поддерживать такие же комфортные условия во всем объеме помещения. Правильный подбор типа и количества инфракрасных обогревателей, схемы их размещения позволят выбрать оптимальный вариант инфракрасной отопительной системы цеха. Такой способ, как показывает практика, сегодня наиболее эффективен и может дать до 50–70 % экономии в затратах на отопление.

 

Для выработки единой политики ОАО «ММК» в области применения лучистых источников тепла для обогрева и создания комфортных условий на рабочих местах в подразделениях и дочерних организациях ОАО «ММК», имеющих дефицит тепловой энергии, рекомендуется устанавливать инфракрасные газовые обогреватели. Такое оборудование успешно используется на объектах ОАО «ММК» (ЦТО, бывший ЦПВ), ЦВС блок очистных сооружений новых сортовых станов, ЗАО «МРК» (ЦМК), ЛПЦ-5 (термическое отделение), ЛПЦ-10, ЭСПЦ, Энергоцех. Эксплуатация оборудования показала его высокую надежность, экономичность и простоту в обслуживании.

 

Имеются существенные отличия между применением излучателей различных типов. Излучатели бывают «светлые» и «темные».

 

«Светлые» – излучатели с открытым горением газа на поверхности керамической пластины и с выделением продуктов сгорания непосредственно в отапливаемое пространство. «Светлые» излучатели имеют следующее преимущество: из-за высокой температуры излучающей поверхности (900–1 000 °С) обеспечивается высокая мощность теплового излучения на единицу поверхности;

 

Недостатки «светлых» излучателей:

 

– жесткое излучение, которое при длительном воздействии способно проникать сквозь кожу человека и вызывать онкологические заболевания, особенно вредно это для глаз находящихся в зоне облучения людей;

 

– пожароопасны, необходимо соблюдать технические требования к размещению горелок на удалении от горючих материалов;

 

– ограниченность применения (используются главным образом там, где люди не находятся постоянно, больше для обогрева оборудования, сушки различных изделий или сыпучих веществ);

 

– необходимость принудительной вентиляция окружающего воздуха, которая увеличивает теплопотери помещения и приводит к дополнительному росту тепловой мощности системы отопления и экономических потерь;

 

– размещение «светлых» нагревателей на значительной высоте (более 15 м от уровня пола).

 

«Темные» – горение газа происходит в трубе, которая и дает инфракрасное излучение, продукты сгорания удаляются за пределы отапливаемого помещения через дымоход. Имеют следующие преимущества:

 

– излучение с более «естественными» для человека характеристиками, близкими к солнечному, что снимает большинство ограничений на применение излучателей;

 

– применяются для обогрева производственных помещений с потолком ниже 3–5 м;

 

– применение «темных» излучателей не противоречит требованиям санитарных норм и пожарной безопасности.

 

На ОАО «ММК» в основном применяются светлые обогреватели.

 

Для использования инфракрасных газовых горелок специалистами УГЭ и ЦЭСТ был сделан предварительный экономический расчет эксплуатационных затрат. Местом установки современного оборудования была выбрана насосная станция очистных сооружений для новых сортовых станов (сравнительный анализ затрат по вариантам централизованного теплоснабжения и применения для отопления инфракрасных газовых излучателей в насосной станции блока очистных сооружений для новых сортовых станов приведен в табл.).

 

Таблица

 

Сравнительный анализ затрат по вариантам централизованного теплоснабжения и применения для отопления инфракрасных газовых излучателей в насосной станции оборотного водоснабжения сортовых цехов (ЦВС)

 

Наименование
затрат

 

Централизованное теплоснабжение

 

Стоимость,
тыс. руб.

 

Инфокрасные газовые излучатели

 

Стоимость,
тыс. руб.

 

Сравнение

 

Наименование работ

 

Наименование работ

 

руб.

 

%

 

Капитальные
затраты

 

ТЭЦ

 

Насосная станция

 

1.Установка насоса СЭ 12501250-140-11 с двигателем А4-400У4 6 Кв мощностью 630 кВт

 

846

 

1.Установка газовых излучателей АА-50 (26 шт.)

 

2 006,732

 

2. Пусконаладочные работы

 

800

 

2. Установка дополнительного оборудования

 

93,314

 

Итого по ТЭЦ Н/С

 

1 646

 

3. Установка газотепловоздушныхагрегатов
АХ-45 (10 шт.)

 

894,660

 

1.Установка центрального теплового пункта с погодной регулировкой (1 шт)

 

4 500

 

4. Монтаж внешних и внутренних сетей газоснабжения

 

1 350

 

2. Установка воздушно-отопительных агрегатов

 

500

 

5. Установка теплогенераторов мощностью 100 кВт (2 шт.)

 

300

 

3. Монтаж внешних сетей теплоснабжения с изоляцией

 

1 500

 

Итого по Н/С:

 

6 500

 

Итого по ТЭЦ и Н/С:

 

8 146

 

Итого по Н/С:

 

4 732,766

 

-3 413,234

 

-42%

 

Эксплуата-ционные
затраты

 

ТЭЦ

 

Насосная станция

 

1. Потребление электроэнергии в отопительный сезон

 

1 193,869

 

1. Расход природного газа на излучатели АА-500

 

958,698

 

2. Дополнительная выработка ХОВ

 

2 656,116

 

3. Потребление природного газа на водогрейные котлы

 

2,583

 

Итого по ТЭЦ:

 

1 462,063

 

Итого по Н/С:

 

958,698

 

-503,365

 

-34%

 

Н/С

 

1.Теплоснабжение в отопительный период

 

1 377,324

 

Итого по Н/С:

 

1 377,324

 

Итого затраты по ТЭЦ:

 

3 108,063

 

Итого затраты по Н/С:

 

7 877,324

 

Итого по ТЭЦ и Н/С:

 

10 985,387

 

Итого затраты по Н/С:

 

5 691,464

 

-5 293,923

 

-48%

 

Результаты расчета показывают, что окупаемость инфракрасных систем выше в 2–3 раза окупаемости традиционных систем отопления. Использование лучистых отопительных систем, как очень прогрессивных и эффективных отопительных систем, предоставляет много выгод с точки зрения образования рабочей среды:

 

– децентрализованное использование природного газа обеспечивает его рациональное применение с высоким КПД и более простое регулирование температур в рабочих зонах;

 

– на рабочих местах обеспечивается тепловой комфорт, поскольку температура воздуха на полу на 2–3 °С выше, чем на высоте 1,5 м над полом;

 

– экономичность системы достигается за счет снижения эксплуатационных затрат (в 3–4 раза).

 

При выборе газовых систем лучистого отопления необходимо обоснованно подходить к выбору характеристик излучателей с целью ограничения негативных факторов, воздействующих на здоровье людей и исключения ошибок при проектировании, выборе типа обогревателя и его монтаже. Для организации работы по устройству системы инфракрасного обогрева необходимо заказывать проект в специализированной организации, имеющей соответствую лицензию и опыт в выполнении данного вида работ, устанавливаемое оборудование должно соответствовать ГОСТам и СНиПам.

 

В настоящее время децентрализация и оптимизация режимов теплоснабжения промплощадки ОАО «ММК» является актуальной задачей. И ее решение носит комплексный характер, охватывая при этом всю систему централизованного теплоснабжения, начиная от источников тепла и тепловых сетей и заканчивая тепловыми установками потребителей, поиском альтернативных источников тепла.

 

Вывоз мусора твердые и утилизация отходов

 

Тарифное регулирование в топливн. Автоматизированная система учета. Проект. Подземные теплопроводы под контролем. Внедрение региональных норм по энергетической эффективности зданий в россии.

 

Главная страница ->  Технология утилизации 

Экологически чистая мебель:


Сайт об утилизации отходов:

Hosted by uCoz